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Abstract

With lower limits of detection and increased stability constantly being demanded of biosensor devices, characterisation of the constituent layers
that make up the sensor has become unavoidable, since this is inextricably linked with its performance. This work describe the optimisation
and characterisation of two aspects of sensor performance: a conductive polymer layer (polyaniline) and the immobilised protein layer. The
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nfluence of the thickness of polyaniline films deposited electrochemically onto screen-printed electrode surfaces is described in this wo
f its influence on a variety of amperometric sensor performance characteristics: time to reach steady state, charging current, catal
ackground current and signal/background ratios. The influence of polymer film thickness on the conductivity and morphology of finis

s also presented.
An electrostatic method of protein immobilisation is used in this work and scanning electron microscopy in conjunction with gold

ntibodies and back-scattered electron detection has enabled the direct visualisation of individual groups of proteins on the sensor s
nformation can provide an insight into the performance of sensors under influence of increasing protein concentrations.

2005 Elsevier B.V. All rights reserved.
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. Introduction

Conducting polymers have merited applications in recent
ears in a great variety of fields such as anticorrosive coatings,
nergy storage systems, gas sensing, as well as electrochromic,
lectrochemiluminescent and electrocatalytic devices[1]. Over

he last decade, these polymers have gained increasing applica-
ions in the development of biosensors, especially those incor-
orating enzymes either as the recognition element (enzyme-
ased biosensors) or as a redox active label (antibody-based
iosensors). Enzymes on their own are poor electrochemical
ommunicators, due to the fact that a thick shell of protein
nsulates their redox centres. Conducting polymers are capa-
le of penetrating this insulating shell and providing a means of
irect electrical communication between the redox centre and

he electrode surface[2]. They achieve this by delocalising redox
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charges over a series of conducting polymer groups, thereb
ing as self-contained electron transfer mediators. Consequ
no additional diffusional mediators need be added to the se
system in order for electron transfer to take place. This
nomenon has been referred to as the “electrical wiring” o
enzyme to the electrode[3]. This has advantages for the lon
term stability of the sensor, since the confinement of the med
to the sensor surface prevents it from leaching into solution,
eliminating the requirement for a containment membrane.
moves toward reagentless systems also facilitate the use o
sensors as stand-alone devices.

PANI has gained particular popularity in biosensor app
tions, partly due to its favourable storage stability and ea
preparation[4]. It is also recognised as the only conducting p
mer that is stable in air[5]. PANI can fulfil several important role
in the biosensor including acting as an immobilisation platf
for biocomponents and as the electron mediator[6]. The latter
role is possible due to the inherent electroactivity of PANI. C
ducting polymer films have also been used to confer antifou
properties to the sensor, with the film serving to reject both
039-9140/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2005.08.036
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troactive interferents and other fouling species such as proteins
[7].

PANI may be deposited onto electrode surfaces through
chemical or electrochemical means. Electrochemical polymeri-
sation, through galvanostatic, potentiostatic or potentiodynamic
means, offers the potential to incorporate a wider range of dopant
ions, since the reaction is carried out in the presence of an
appropriate electrolyte rather than a chemical oxidant. Electro-
chemical oxidation also gives better control over film properties,
such as thickness and morphology. For these reasons, this has
become the most common method of PANI film preparation for
sensor applications and has been the method employed by our
group to date in the development of a range of enzyme- and
antibody-based biosensors[8–12].

Since PANI films do not retain their conductive character in
non-acidic media[13] (i.e. the neutral environments required for
most proteins to function optimally), the electropolymerisation
process has to be carried out in the presence of a dopant. For
this reason, previous work in our laboratory has focused on the
development of biosensors incorporating the PANI doped with
the poly(vinylsulphonic acid) (PVS) ion[6,8–12]. The inclusion
of the latter maintains electrical neutrality in the oxidised form of
the polymer and also leads to increases in its structural stability
and conductivity at a broader range of pH values[14].

PANI films were synthesised potentiodynamically in 1 M HCl
by the anodic oxidation of aniline. The polymerisation process
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so as to maximise the mass of protein on the electrode sur-
face, as is the case with traditional ELISA procedures[6]. The
optimal protein binding capacity of the electrode surface was
subsequently investigated by modifying PANI/PVS-coated elec-
trodes with a range of concentrations of HRP and the results have
been published previously[10]. This immediately illustrated
that, far from being optimal, the 1 mg/ml protein concentration
yielded much lower catalytic signals than lower concentrations
of enzyme. The optimum concentration was found to be approx-
imately 0.6 mg/ml. However, very good signals could still be
obtained at concentrations far below this. Signals at 0.01 mg/ml
were comparable to 1 mg/ml in this regard. The same result was
obtained when anti-biotin antibody was attached to the poly-
mer backbone and visualised via interaction with biotin-HRP,
demonstrating that essentially the mass of protein being bound
to the surface was similar irrespective of the nature of the pro-
tein being used. It may also be the case that electron transfer at
the electrode surface was more efficient at lower antibody con-
centrations. At higher protein concentrations, steric hindrance
due to overcrowding of protein may have blocked the access
of substrate to enzymes located closer to the electrode surface.
Alternatively, with enzymes located on the outer layers, catalytic
events may have occurred before diffusion of charge transfer to
the electrode surface could take place. Both of these factors could
have contributed to decreased catalytic signals.

A direct visualisation of immobilised protein of varying
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as initiated through the formation of resonance-stabilised
ine cation radicals from the protonated aniline monomer. P
ndergoes two redox processes in acidic media, which c
pond to two sets of redox peaks observed during the poly
ation process[6]. The thickness of the polymer films deposi
ncreases with successive potential cycles, since increa
oth the anodic and cathodic currents, which are assoc
ith the oxidation and reduction of electrode bound polym
re observed. This method of polymer deposition has the a

age that the amount of electroactive material deposited c
ontrolled by controlling the number of potential cycles pas
olymer thickness invariably affects various aspects of resu
ensor performances and these will be discussed in this w

Sensor behaviour is also known to be strongly influen
y the surface geometry and morphology of the immobil
iolayer[15]. A common approach for the electrochemical de
ition of protein onto sensor surfaces is the electrostatic a
ent of protein to a previously electropolymerised polymer
n the electrode surface. Mu and co-workers have produ
eries of sensors in this way, to immobilise a variety of enzy

ncluding galactose oxidase[16], HRP [17], glucose oxidas
GOD) [18], sarcosine oxidase[19], cholesterol oxidase[20]
nd ascorbate oxidase[21] to a PANI backbone. The PANI fib
il has a diameter of approximately 2000Å, which facilitated
asy intercalation of these enzymes, whose diameters w

he 52–1000̊A range, into the films[16].
Previous work in our laboratory has focused on a sim

lectrostatic approach for the immobilisation of protein o
ANI/PVS-coated electrodes[6]. In this work, it was assume

hat the modification of the electrode surface with antibody
est achieved by using a high protein concentration (1 mg
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oncentrations on the sensor surface had never been in
ated. Such work would explain the amperometric observa
escribed above and would give an increased understand

he protein binding capacity of sensor surface. This work is
escribed here.

. Experimental

.1. Materials

Horseradish peroxidase was 200 U/mg (Sigma P6782
as purchased from Sigma–Aldrich (Poole, Dorset, UK
as poly(vinylsulphonic acid) sodium salt (27,842-4). Anil
as purchased from Aldrich (13,293-4), vacuum distilled
tored frozen under nitrogen. The silver enhancer kit (SE
as also purchased from Aldrich and comprised a silver

Solution A), an initiator (Solution B) and a fixer (sodiu
hiosulphate pentahydrate). 30% (v/v) hydrogen peroxide
ion (108,597) was purchased from Merck (Darmstadt,
any). Human chorionic gonadotropin (HCG)-�monoclona
ntibody–colloidal gold particle (62-H25) was obtained fr
itzgerald Industries Int. (MA, USA).

Carbon paste (C10903D14) was obtained from Gwent E
ronic Materials Ltd. (Gwent, UK). Silver conductive i
Electrodag® PF-410) and dielectric polymer ink (Electroda®

52 SS BLUE) were purchased from Acheson. Poly(ethyl
erephthalate substrates were Melinex® (pre-shrunk) films
btained from HiFi Industrial Film Ltd. (Dublin 6, Ireland
eriwash universal screen wash (ZT639) was purchased
ericol Ltd. (Kent, UK). The silver/silver chloride (Ag/AgC

eference electrode was purchased from Bioanalytical Sys
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Ltd. (Cheshire, UK). The platinum mesh (29,809-3) was pur-
chased from Aldrich.

2.2. Buffers and solutions

PBS is 0.1 M phosphate buffer, 0.137 M NaCl and 2.7 mM
KCl, pH 6.8. This was prepared by mixing solutions containing
0.1 M Na2HPO4, 0.137 M NaCl and 2.7 mM KCl and 0.1 M
KH2PO4, 0.137 M NaCl and 2.7 mM KCl to a pH of 6.8.

2.3. Instrumentation

Screen-printing was performed with a semi-automated DEK
Albany 247 printing machine (Weymouth, UK). A nylon screen
(Miller Group Ltd., Dublin 12, Ireland) with a mesh thickness
of 77 T (filaments per centimetre on thick grade thread (35–40%
open area)) and mounted at 45◦ to the print stroke was employed.
A single square blade rubber squeegee was employed. Carbon
and silver layers were cured in a conventional laboratory oven.
The ultra-violet (UV) lamp curing system was obtained from
UV Process Supply, Inc. (Cortland, Chicago, IL, USA).

All voltammetric and amperometric electrochemical mea-
surements were performed using a BAS100/W electrochemi-
cal analyser with BAS100/W software, operating either cyclic
voltammetry or time-based amperometric modes. An Ag/AgCl
reference electrode and a platinum mesh auxiliary electrode
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leucoemeraldine (LM) radical cation (LM•+)) reached an anodic
current value of−2.8 mA.

2.6. Immobilisation of protein on electrode surfaces

Following deposition of PANI/PVS onto the electrode sur-
face, the electrode was transferred to a 2 ml batch cell as previ-
ously described[10]. The surface of the polymer was reduced
in 2 ml of PBS (degassed for 10 min under nitrogen or argon)
at−500 mV versus Ag/AgCl using a sample interval of 500 ms,
over 1500 s and at a sensitivity of 1× 10−4 V/A.

Enzyme or antibody was prepared in PBS prior to use. Very
quickly after reduction was complete, PBS was removed from
the cell and quickly replaced with the protein solution, not under
stirring or degassing. Again quickly, oxidation was performed at
700 mV versus Ag/AgCl for 1500 s. During this oxidation, the
protein became electrostatically attached to the polymer surface.
After oxidation was complete, the protein solution was carefully
recovered from the cell and re-stored for later use.

2.7. Amperometry

HRP at a concentration of 0.5 mg/ml was immobilised onto
the working electrode, according to Section2.6, which was then
incorporated into a batch cell set-up. H2O2 at a concentration of
8 mM was added to the cell containing 2 ml PBS following the
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ere employed for bulk electrochemical experiments.
Scanning electron microscopy (SEM) was performed w

itachi S 3000N scanning electron microscope. Images
btained using either the secondary electron (SE) or b
cattered electron (BSE) detection modes. Acceleration vol
f 20 and 10 keV were employed. Atomic force microsc
AFM) measurements were performed at room temper
nd humidity using a Digital Instruments DimensionTM 3100
anoScope®. Profilometry measurements were carried out
Dektak V 220-Si Stylus Profiler system (Veeco Instrum

td., Cambridge, UK). Resistance measurements were ca
ut using the two-probe technique and a HP 34401A Multim
Hewlett Packard, Leixlip, Co., Kildare, Ireland).

.4. Production of screen-printed electrodes

Screen-printed electrodes (SPE) were designed and pro
s described previously[9]. Electrodes were cut from the print
heet leaving excess substrate on either side to a width of 1
lectrodes were then pre-treated in 0.2 M H2SO4 solution as
escribed previously[11].

.5. Polymerisation of aniline on electrode surfaces

A mixture of 7.8 ml 1 M HCl, 186�l aniline and 2 ml PVS
as prepared and degassed for 10 min. An argon or nitr
tmosphere was maintained over the surface of the so

hroughout. Aniline was polymerised on the surface of
orking electrode using voltammetric cycles between−500
nd 1100 mV versus Ag/AgCl at 100 mV/s and a sensitivit
× 10−3 V/A, until the first oxidation peak (representing
-
s

d

d

.

n
n

eaching of a steady state at−100 mV versus Ag/AgCl, with
ample interval of 500 ms and sensitivity of 1× 10−4 V/A.

.8. Resistance measurements

Measures of the base resistance of electrodes coated
olymer films were performed with a two-point probe an
igital voltmeter. Measurements were made from the edg

he silver conducting track to the centre-point of the sen
urface.

. Results and discussion

.1. Influence of polymer film thickness on amperometric
esponses

The sensitivity and limit of detection attainable by an ana
al sensor inevitably depend on the background current exh
y the material. For sensors based on polymers, this curre

unction of the morphology of the polymer, which in turn w
epend on the polymerisation conditions employed and o
ature of the dopant counter ions incorporated into the g

ng polymer chains[22]. The thickness of the polymer film al
ictates the response time of the biosensor as well as th
f electron transfer. For electrochemically polymerised fi

he amount of polymer deposited is directly related to the
mount of charge passed during growth. Although some ch

s lost forming oligomers, film thickness can be carefully c
rolled by growing films to a desired charge value. In the pre
ork, PANI/PVS films of varying thicknesses were grown
lectrode surfaces by controlling the number of potential s
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used in the voltammetric process until a desired charge value,
denoted by the current of the first oxidation peak for the LM•+

radical cation, was reached.
Investigations into the optimum thickness of polymer were

carried out using the PANI/PVS electrodes in a HRP biosen-
sor format. HRP at a concentration of 0.5 mg/ml was immo-
bilised onto electrodes prepared with differing thicknesses of
PANI/PVS, according to Section2.6. Previous work on PANI-
based amperometric sensors using this method employed 10
redox cycles as standard during the polymerisation process
[6]. Depending, amongst other things, on the nature of the
underlying electrode in question, this resulted in the depo-
sition of films of varying thicknesses on electrode surfaces.
In this work, monitoring of film thickness and hence of sen-
sor properties was achieved by monitoring the current passed
during the polymerisation process rather than the number of
voltammetric cycles employed to polymerise the monomer. Two
sets of redox peaks were noted for the polymerisation of ani-
line in acidic solution and results were expressed in terms of
the anodic current of the first oxidation peak, which corre-
sponded to the formation of the LM•+. The effects that varia-
tions in polymer thickness had on the resulting amperometric
responses were investigated in terms of time taken to reach
steady state, background currents, charging currents and the
magnitude of the sensor responses. These were investigated
using glassy carbon electrodes (GCEs) as well as SPEs con-
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The initial charging current peak in time-based amperometric
experiments was due to the charging of the polymer as a result
of its oxidation for 25 min prior to steady-state experiments
and is typical of the behaviour of previous polymer-modified
SPEs[6]. The presence of such charging peaks was generally
indicative of good sensor performances, since sensors that did
not display such charging profiles did not subsequently pro-
duce favourable catalytic responses. The effect of polymer film
thickness on the magnitude of the charging current is illustrated
in Fig. 1(C). Charging currents for both GCE- and SPE-based
sensors increased in a pseudo-linear fashion with increasing
polymer thickness, although currents for SPE sensors were con-
sistently greater in magnitude than GCE sensors. This can be
attributed to the morphology of PANI/PVS films on the under-
lying electrodes, since polymer films were observed to have
slightly different morphologies on GCEs and SPEs (results not
shown).

Decreases in experimental time with decreasing polymer
thickness were at the expense of lower catalytic current
responses for the sensor, as shown inFig. 1(D). Whereas all
other aspects of the amperometric process were found to increase
with increasing polymer thickness, steady-state currents were
found to initially increase with film thickness, but to decrease
for thicker films. In the case of SPEs, this decline began after
films were grown to thicknesses where the LM•+ peak current
exceeded ca.−6.3 mA. The decline began sooner for the GCE,
w sses
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iously [9].

The influence of polymer film thickness on the time to re
teady state (when a potential of−100 mV was applied) an
ence the response time of the sensor, is illustrated inFig. 1(A).
pseudo-linear trend was present for both GCEs and SPEs

he time taken to reach steady state increasing with incre
olymer thickness in both cases. This was as expected

hicker polymer films would require longer discharge per
efore substrates or analytes could be introduced. For each
ess, SPE-based sensors took longer to discharge than
ased sensors. From these results, it could be conclude

hinner polymer films would therefore be preferable for se
roduction, since lower response times would enable anal
e introduced into the system sooner and shorter analysis
ould be a feature of such sensors.
The sensitivity and limit of detection of a polymer-ba

iosensor has been said to be mainly dependent on the
round current exhibited by the polymer[22]. If the backgroun
urrent of a sensor based on these PANI/PVS films is too l
hen the contribution from the reduction of H2O2 by HRP will
e difficult to measure[23]. The effect that increasing polym

hickness had on the background charging currents of elect
s illustrated inFig. 1(B). A linear relationship (the most line
n terms ofr2-values for any of the parameters investigat
xisted between background currents and the thickness of
er films. High background currents could limit the contribu

rom the enzyme catalytic reaction, thereby decreasing the
itivity of the sensor. Therefore, thinner polymer films wo
e preferable, especially where lower levels of analyte are
etected[23].
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ith current decreases observed for films grown to thickne
here the LM•+ peak current exceeded ca.−4.1 mA. These
ecreases in sensor response at increased film thicknesse
e attributed to the increased levels of surface cracking obs

or such PANI films, as exhibited by SEM analysis of these fi
Section3.3).

A combination of the data plotted inFig. 1(B and D) resulte
n the signal/background (s/b) ratios for GCE and SPE sen
s shown inFig. 1(E). Two different profiles were obtained. W
egard to sensors based on GCEs, s/b ratios decreased ex
ially with increasing polymer thickness. This would illustr
hat thinner layers of polymer films would be optimal in orde
btain the maximum obtainable outputs for such sensors.
ver, this exponential decay in s/b signals was not evident
egard to sensors based on SPEs. The maximum obtainab
ut was for sensors based on polymer film thicknesses o
2.8 mA peak current. These sensors yielded s/b ratios o
aking this and all the above parameters into considerati
as therefore decided to maintain the surface coverage
nodic peak current of−2.8 mA for the LM•+ radical cation
approximately 10 redox polymerisation cycles) for subseq
ensor preparations. The thickness of the corresponding
er films resulted in the optimal amperometric outputs,

ewer contributions from background currents and lower
or response times in comparison to those generated from
lms.

Stylus profilometry is commonly employed for the meas
ent of surface roughness and step height patterns. In the p
ork, the technique was employed to determine the actual t
ess of polymer films grown until the LM•+ radical cation
eached the optimised value of−2.8 mA. The mean thickne
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Fig. 1. Effect of polymer thickness on the: (A) response time of sensors based on SPEs,y =−239.67x+ 556.11,r2 = 0.9489, and GCEs,y =−338.96x+ 61.379,
r2 = 0.9156; (B) background current responses of sensors based on SPEs,y =−0.9002x+ 1.6848,r2 = 0.9917, and GCEs,y =−1.1924x+ 0.5692,r2 = 0.9899; (C)
charging currents of sensors based on SPEs and GCEs; (D) catalytic currents of the sensor for sensors based on SPEs and GCEs; (E) signal/background ratios for
sensors based on SPEs and GCEs (SPE: diamonds, GCE: squares;−100 mV vs. Ag/AgCl).

of the polymer layer was determined to be 13.7�m, with aRa
value of around 3.1�m.

3.2. Influence of polymer film thickness on film resistance

The resistance and conversely the conductivity of the sen-
sor produced were also found to be dependent on the thickness
of polymer films deposited. Using the two-probe technique, the
track resistance of a bare carbon SPE was measured to be 2.0�

and that of an electrode electrochemically pre-treated as per Sec-
tion 2.4to be 3.2�. However, with the deposition of PANI/PVS
films on these electrodes, sensor resistances increased from the
Ohm to the kilo-Ohm range, as illustrated inTable 1. The resis-
tance of the electrodes was found to increase exponentially with

increasing polymer thickness, from 0.008 k�at an electrode pre-
pared with 2 voltammetric cycles (−0.66 mA) to 42 k�for an
electrode prepared with 15 voltammetric cycles (−11.00 mA).
Such decreases in conductivity with increasing film thickness

Table 1
Relationship between film thickness and resistance for electrochemically poly-
merised polyaniline films

Peak current LM•+ (mA) Resistance (k�)

−0.66 0.008
−2.63 0.152
−5.16 1.200
−8.53 16.200

−11.00 42.000
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Fig. 2. SEM images of PANI/PVS-coated electrodes at three: (A) 4, (B) 6, (C), 8 (D), 10 (E) and 12 (F) voltammetric cycles (800×, 1000×, 1200×and 3500×
magnifications, SE detection mode).

have been reported elsewhere for polypyrrole films, where the
phenomenon was attributed to lengthening of conducting cross-
links between polymer chains[24]. Decreases in conductivity of
polypyrrole due to overoxidation have been reported previously
[25] and such conductivity decreases have also been reported for
increasing thickness of polypyrrole films[26]. In the case of the
PANI/PVS electrodes in this work, more pronounced increases
in resistance were observed at greater film thicknesses, which
could account for the decreases in amperometric responses from
sensors produced using such electrodes. Distances from enzyme
active sites to electrode surfaces may be too large for effective
current transfer on such films, or enzyme–substrate interactions
may have taken place before the current had the opportunity to
interact with the electrode surface.

3.3. Influence of polymer film thickness on film morphology

From a structural point of view, the effects of increasing the
number of electrode deposition cycles – and hence the increasing

thickness of the PANI/PVS films – can be seen in the typical
SEM images shown inFig. 2. For films grown using three or four
cyclic voltammetric cycles, shown inFig. 2(A and B), ‘fingers’
of polymer were observed. At six or more voltammetric cycles,
as shown inFig. 2(C–F), these features were no longer evident
and buds or nuclei of polymer, dominated the surface of the
electrode, giving the polymer a ‘cauliflower-like’ appearance. At
voltammetric cycles greater than 4 but less than 10, no obvious
differences in the structural morphology of the polymer films
were observed.

However, films grown using 15 or more voltammetric cycles,
began to exhibit cracking, which was evident from SEM images
such as that shown inFig. 2(F). Such cracking could delete-
riously affect sensor responses, since this could lead to inter-
ruptions in the conducting network and hence reduce electron
flow. The decreases in catalytic current outputs observed for such
electrodes, outlined previously, could therefore have been due to
such surface cracking. However, the thickness of the PANI/PVS
film did not affect its adhesion to the underlying electrode
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Fig. 3. SEM images of PANI/PVS electrodes electrostatically coated with
0.56 mg/ml HRP at: (A) 30�m and (B) 3�m resolution (1000×and 10,000×
magnifications, SE detection mode).

substrate, unlike the poly(N-methylpyrrole) films developed by
Bartlett et al., where thicker films tended to peel from the gold
electrode substrate[27].

3.4. Structural characteristics of proteins absorbed to
polymer films

As explained previously, the optimum concentration of pro-
tein immobilised to PANI/PVS-coated electrode surfaces that
led to optimal amperometric outputs was found to be approxi-
mately 0.6 mg/ml. SEM images of a polymer electrode surface
modified with 0.6 mg/ml HRP are shown inFig. 3. In compari-
son to PANI/PVS images shown inFig. 2, a light wispy layer of
protein had become deposited on the polymer nodes, although
the overall ‘cauliflower-like’ appearance was still prevalent, with
proteins immobilised with random orientations to these nodes.
At higher magnifications, shown inFig. 3(B), it was difficult to
distinguish these surfaces from those of the PANI/PVS layers
shown inFig. 2. Although SEM is capable of imaging struc-
tures down to nanometre dimensions, more powerful imaging
techniques were required if clearly resolved images of proteins
were to be obtained. Attempts were made to image HRP immo

Fig. 4. 2D (A) and 3D (B) AFM images of a PANI/PVS electrode coated with
0.6 mg/ml HRP (tapping mode).

bilised on PANI/PVS-coated SPEs using AFM, with typical
images shown inFig. 4. The nucleation morphology of proteins
observed from SEM images was also evident here. What was also
apparent was that the protein layer was not evenly distributed
over the sensor surface; rather clumping of proteins was evident.
The rough nature of the underlying SPE surface meant that the
silicon nitride AFM tips were easily broken when brought into
contact with the sensor surface. For this reason, further AFM
analysis of the protein layers was abandoned and a method for
the indirect visualisation of proteins sought.

Although AFM and SEM in the SE detection mode could pro-
vide adequate surface information as to the overall topography
of protein films, the resolution of individual protein or groups
of proteins was not possible. However, through the use of pro-
teins conjugated to a non-fading, electron-dense particle such
as gold, it was possible to indirectly visualise the distribution
of proteins using the BSE detection technique, which is sensi-
tive to the detection of higher molecular weight particles such
as gold and silver. A combination of these techniques provided
both high-resolution images (SE), while materially dependent
signals (BSE) provided an accurate localisation of Abs on the
surface of the electrode, by distinguishing between the underly-
ing PANI/PVS backbone and the protein layer. In some cases,
BSE signals can be improved using a silver enhancement step.
This process caused the reduction of silver ions, resulting in
the precipitation of metallic silver around the colloidal gold
p their
c nt step
[ u-
-

articles. Berney et al. have characterised the surface of
hip-based transferrin biosensor using such an enhanceme
15]. In the present work, HCG-�monoclonal antibodies conj
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gated to 15�m colloidal gold particles were employed to image
the topography of Ab layers on PANI/PVS-coated SPEs.

BSE and SE images were obtained for surfaces coated with
varying concentrations of Ab from 10 to 0.08 mg/ml and typi-
cal images are shown inFig. 5. In all SE images, distinctions
between the silver-coated gold particles and the polymer surface

were not possible. However, with BSE detection, silver-coated
gold labels were clearly visible as brighter particles against
the darker polymer background. At higher concentrations of
antibody–gold colloids, distribution of protein seemed to reflect
the height profiles of the underlying polymer, whose profiles can
be seen from the SE images. However, at 10 mg/ml (Fig. 5(A)),

F
5

ig. 5. SEM images obtained in SE and BSE detection modes of varying con
mg/ml, (C) 1.25 mg/ml, (D) 0.625 mg/ml, (E) 0.5 mg/ml, (F) 0.313 mg/ml, (G) 0.
centrations of Ab–gold colloids on PANI/PVS-coated electrodes: (A) 10 mg/ml, (B)
157 mg/ml and (H) 0.078 mg/ml (2500×, 2000×, 1500×and 1200×magnifications).
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Fig. 5. (Continued).

aggregation or clumping of protein was observed on electrode
surfaces. Such clumping was deemed to have been responsi-
ble for minimised amperometric signals observed previously at
these higher concentrations[10]. This tendency to aggregate had
decreased at the 5 mg/ml concentrations, with a relatively even
(though porous) spread of protein remaining on the polymer
surface. More uniform surface coverages were also obtained
at concentrations of 1.25 mg/ml (Fig. 5(C)) and 0.625 mg/ml

(Fig. 5(D)), respectively. However, patches of polymer could be
observed intermittently between antibody clusters. This trend
continued at the lower concentrations of antibody, shown in
Fig. 5(E–H), with the sparse distribution of protein reflecting
the lower concentrations used. As observed previously, although
antibody coverage was low in these cases, the amperometric sig-
nals were still larger than for electrodes coated with higher con-
centrations of antibody[10]. This could be attributed to reduced
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instances of antibody clumping at lower concentrations, result-
ing in more effective communication between enzyme labels
and electrode surfaces.

4. Conclusions

Electrochemically polymerised PANI films have been shown
to possess a nodular structure on electrode surfaces, with film
thicknesses influencing various aspects of sensor responses.
Increasing the thickness of polymer films resulted in sensors
displaying increased response times as well as background and
charging currents. In terms of catalytic current outputs, film
thicknesses of−6.3 mA for SPE and−4.1 mA for GCE pro-
duced the maximum outputs. At thicknesses greater than these,
catalytic current responses decreased, possibly due to increased
cracking observed in SEM images of such films. However, the
increased background currents and responses times obtained at
these thicknesses negated such films being used for sensing
purposes. Films grown to−2.8 mA were therefore chosen as
optimal for further work, irrespective of the underlying substrate.
These produced films of ca. 13.7�m in thickness. The differ-
ences in various aspects of amperometric responses obtained
with PANI/PVS films grown on SPE and GCE surfaces could
be attributed to differences in the morphology of the finished
films.

Through the use of gold-labelling techniques and BSE detec-
t mo-
b otein
c ranc
e the
h o ele
t

s a
m reen
p niqu
w can
b onl
b onse
q with
t -us
s am-
m ppli-
c as
a ibilit
a
a to b
p ues

Chemical polymerisation of aniline also has the advantage that
it may be carried out on a greater number of electrodes simulta-
neously, using basic laboratory materials.
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